

The Solutions Network

Rochester, New York

29 Palms Co-generation Project

Gary Morrissett
Energy Manager
29 Palms Marine Corps Base

ESPC vs UESC

- •ESPC
- Risk assesment
 - Mainly contractor
 - Long time service arrangement R&R
 - Guarentee savings with M&V
 - Contractor involvement through life of project

- •UESC
- Risk assesment
 - Mainly Govt
 - No guarentee savings based on estimates
 - No service

7.2 MW Cogeneration Plant

- Total project cost \$16 m
- Payback 3.5 years
- Applied project payback19 years
- •Completion of plant July 7, 2003
- Annual Yearly Savings
- \$5.8 m
- •BTU output 35Mbtu

www.energy2004.ee.doe.gov

Plant Basics

- Basic Plant design
 - 7.2 MW Solar Turbine Taurus 60
 - Absorption chilling pre cooling
 - Gas compressors
 - SEMS monitoring and emissions controls
 - Heat rejection system
 - Breaker tie in
 - Central Heat Plant loading

Design Basics

- Size is dependent on
 - Electrical load-Base loaded
 - Minimum load 7.1MW
 - Thermal load-Maximized- minimal use of heat rejection system, tie into existing Central Heat Plant. Utilize Absorption chillers.
 - 35 Million btu/hr
 - Natural Gas supply-Gas compression

www.energy2004.ee.doe.gov

Absorption chilling

- Benefit
- Pre cool air to turbine to increase efficiency
- Utilize waste heat
- Problems
- No backup pump
- •Because of ambient temp, cannot fire turbine without chiller unless outside air is cool enough for low T-5
- No backup method to cool

Gas compressors

- Benefits
- 3 compressors
- Low capacity does not equal shutdown
- Problems
- •Requires constant power
- Loss of power requires purge of system
- Single screen control

www.energy2004.ee.doe.gov

SEMS monitoring and emissions controls

- Benefits
- •Tighter controls normal less than 1ppm nox
- Single catalyst design
- Problems
- Cal gas and calibration requirements AQMD
- Catalyst replacement every 5 years
- Amonia Hydroxide solution for control
- Pump seals

Breaker tie in

- Benefit
- Carry central load of base during extended outages
- Accurate monitoring of loads
- Problems
- •Turbine loading sequence
- •Complexity of interaction to ring-buss

www.energy2004.ee.doe.gov

System performance

- First year complete
- Generated 65 million
 KWH so far
- Average 7 MW output
- Down time minimal
- Addition of Heat rejection wall to stop hot air from entering turbine
- Complex requirements for electronics and system operations
- Specialized personnel needed to troubleshoot some problems